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Abstract
In this review we demonstrate how the algebraic Bethe ansatz is used for the
calculation of the energy spectra and form factors (operator matrix elements in
the basis of Hamiltonian eigenstates) in exactly solvable quantum systems. As
examples we apply the theory to several models of current interest in the study
of Bose–Einstein condensates, which have been successfully created using
ultracold dilute atomic gases. The first model we introduce describes Josephson
tunnelling between two coupled Bose–Einstein condensates. It can be used not
only for the study of tunnelling between condensates of atomic gases, but for
solid state Josephson junctions and coupled Cooper pair boxes. The theory
is also applicable to models of atomic–molecular Bose–Einstein condensates,
with two examples given and analysed. Additionally, these same two models
are relevant to studies in quantum optics. Finally, we discuss the model of
Bardeen, Cooper and Schrieffer in this framework, which is appropriate for
systems of ultracold fermionic atomic gases, as well as being applicable for the
description of superconducting correlations in metallic grains with nanoscale
dimensions. In applying all the above models to physical situations, the need
for an exact analysis of small-scale systems is established due to large quantum
fluctuations which render mean-field approaches inaccurate.
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1. Introduction

Exactly solvable models of quantum mechanical systems provide an important insight into
the nature of quantum physics, with the simple harmonic oscillator and the non-relativistic
hydrogen atom serving as the archetypal examples. One method for solving these models is
to exploit an underlying algebraic structure, well known to be the Lie algebra gl(3) for the
harmonic oscillator and so(4) for the hydrogen model [1]. In this approach, the Lie algebraic
structure plays the role of generating states of the system while at the same time providing state
labels (or quantum numbers). A celebrated exact solution of a quantum many-body model is
that for the one-dimensional Heisenberg (spin-1/2) chain, due to Bethe [2]. Out of this work
grew the concept of the Bethe ansatz for the construction of the eigenvectors for an exactly
solvable Hamiltonian. In adopting this method, a general possible form for an eigenvector is
assumed that is dependent on several free parameters. Constraints are then determined for the
parameters which ensure that this vector is an eigenvector of the Hamiltonian. The constraint
equations are referred to as the Bethe ansatz equations of the model.

Motivated by Bethe’s work the field of exactly solvable models flourished during the
1960s led by McGuire [3], Lieb [4], Sutherland [5], Yang [6] and Baxter [7], amongst
many others. Out of this activity arose the Yang–Baxter equation, the solution of which
provides a sufficiency condition to construct a model which is exactly solvable (applicable to
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one-dimensional quantum spin chains, including quantum field theories as the lattice spacing
goes to zero, and classical two-dimensional lattice systems) [8, 9]. A fundamental feature
of the Yang–Baxter equation is that it can always be used to construct a family of mutually
commuting matrices, known as transfer matrices, which facilitates the application of the Bethe
ansatz. The method of the Bethe ansatz can take a variety of forms, commonly known as the
coordinate, analytic, functional and algebraic forms. It is this latter approach that will be the
focus of our work here, as this is the most appropriate to serve our requirements.

The algebraic formulation of the Bethe ansatz, and the associated quantum inverse
scattering method, was primarily developed by the group of mathematical physicists in
St Petersburg [10–14]. Its applicability extends beyond the study of one-dimensional spin
chains, quantum field theory and two-dimensional lattice models to systems of correlated
electrons [15], conformal field theory [16], as well as precipitating the notion of quantum
algebras (deformations of universal enveloping algebras of Lie algebras) [17–20]. The main
motivation for the algebraic formulation of the Bethe ansatz was not only for calculating the
energy spectrum of a model, but to also accommodate the calculation of correlation functions.
An initial step in this direction is to compute the form factors of an operator (not necessarily
observable). Here the term ‘form factors of an operator’ simply refers to the matrix elements
of that operator in the basis of Hamiltonian eigenstates. Expectation values of observable
operators and general correlation functions are expressible in terms of form factors through
completeness relations.

The study of correlation functions in the context of exactly solvable models has its origins
in Baxter’s corner transfer matrix method [7]. Following on from this, a rich theory has been
developed using ideas taken from affine quantum algebras, vertex operators, integrable field
theories, the off-shell Bethe ansatz and the Knizhnik–Zamolodchikov equation [21–27], as
well as the algebraic Bethe ansatz approach (e.g. [13, 28–31]). For the models we will study
here the calculation of form factors will be undertaken through extensive use of the Slavnov
formula [32] for the scalar products of Bethe eigenstates. The Slavnov formula provides
an explicit determinant representation for the scalar products. A refined proof of this result
was given by Kitanine et al [29], using the notion of factorizing the solutions of the Yang–
Baxter equation in terms of Drinfeld twists [33]. They applied this method to successfully
compute form factors for the anisotropic (XXZ) Heisenberg chain [29], and in a closely related
work Korepin and Slavnov computed form factors for the quantum non-linear Schrödinger
equation [30]. In both cases the results are valid for finite size systems, and thus this approach
is appropriate for applications to nanoscale systems. The results presented here are largely
inspired by these works.

The need to appeal to the exact solution of a model has been well illustrated in the
context of the energy spectrum of metallic grains of nanoscale size. Experiments conducted
by Ralph, Black and Tinkham (RBT) [34, 35] using single electron tunnelling spectroscopy
on aluminium grains with mean radii in the range 5–13 nm indicated significant parity effects
due to the number of electrons in the system. The electron number remains fixed due to the
large charging energy of the grains, which is a consequence of their small size. For grains
with an odd number of electrons, the gap in the energy spectrum reduces with increasing size
of the system, in contrast to the case of a grain with an even number of electrons, where a gap
larger than the single electron energy levels persists. In the latter case the gap can be closed
by a strongly applied magnetic field. The conclusion drawn from these results is that pairing
interactions are prominent in these nanoscale systems. For a grain with an odd number of
electrons there will always be at least one unpaired electron, so it is not necessary to break a
Cooper pair in order to create an excited state. For a grain with an even number of electrons,
all excited states have at least one broken Cooper pair, resulting in a gap in the spectrum.
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In the presence of a strongly applied magnetic field, it is energetically more favourable for a
grain with an even number of electrons to have broken pairs, and hence in this case there are
excitations which show no gap in the spectrum.

A naive approach to describe these nanograins is to apply the theory of superconductivity
due to Bardeen, Cooper and Schrieffer (BCS) [36]. Indeed, the BCS model is appropriate for
these systems but the associated mean-field treatment fails. There are two main reasons for
this. First is because the BCS analysis makes use of the grand canonical ensemble whereas
in the experiments the electron number is fixed. Second is because a mean-field theory
approximates certain operators in the model by an average value. At the nanoscale level, the
quantum fluctuations are sufficiently large enough that this approximation is invalid. In systems
where the mean single particle energy level spacing, which is inversely proportional to the
volume, is comparable to the bulk superconducting gap (as is for metallic nanograins), it was
thought that pairing interactions would not correlate any energy levels. This was conjectured
by Anderson [37] on the basis of the BCS mean-field analysis, but the experiments of RBT
show this not to be the case. Consequently, an exact solution was desired in order to clarify
the issue.

Remarkably, the exact solution of the reduced BCS model (‘reduced’ refers to the fact that
only zero-momentum Cooper pairs are considered and all couplings for scattering of Cooper
pairs are equal) had been obtained and analysed many years earlier in a series of works by
Richardson and Sherman [38, 39] using an approach equivalent to the coordinate Bethe ansatz.
The motivation for their work was for application of pairing interactions in nuclear systems,
which involve fixed particle number, and thus the BCS analysis referred to above is not valid.
However, the condensed matter physics community was unaware of this earlier work at the
time the results of RBT were communicated. It was subsequently shown that theoretical
results obtained through an analysis of the exact solution for the reduced BCS Hamiltonian
were compatible with the experimental results of RBT [40].

One of the most currently active fields is the study of Bose–Einstein condensates of
ultracold atomic gases [41, 42]. The Bose–Einstein condensed state is of a purely quantum
mechanical nature and, in analogy with the phenomena of superconducting metallic nanograins
discussed above, a mean-field analysis of small-scale systems composed of Bose–Einstein
condensates is inadequate due to significant quantum fluctuations. While there are many
novel physical properties to be explored in the study of Bose–Einstein condensates, there are
three features that we will discuss here. The first is the phenomenon of Josephson tunnelling
between two coupled Bose–Einstein condensates. Recall that the Josephson effect was first
proposed in relation to the tunnelling of Cooper pairs through an insulating barrier separating
two superconductors [43, 44]. (A very informative historical account is given in [45].) It has
been proposed as a means to couple qubits for the purpose of quantum computation [46, 47].
The experimental realization of Bose–Einstein condensation in the atomic alkali gases provides
a framework in which to observe macroscopic tunnelling in a system with tunable couplings.
An extensive account of this phenomenon can be found in [48], which discusses in detail
the canonical Josephson Hamiltonian (equivalent to a two-site Bose–Hubbard model) for the
description of this effect. It is not well known that this model is exactly solvable through the
quantum inverse scattering method, which was established about a decade ago in the context of
the discrete self-trapping dimer model [49, 50]. Below, we show that a slightly more general
model is also exactly solvable and we derive explicit exact form factors for the generalized
model.

The second aspect of Bose–Einstein condensation we will discuss is that of a condensate
composed of a coherent superposition of atomic and molecular states. This phenomenon has
been predicted and studied by theorists (e.g., see [51–55]) and recently realized experimentally
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[56–58]. In particular, for the experiment of [58] using 85Rb atoms, which are converted into
diatomic molecules via a Feshbach resonance, the system was prepared, allowed to evolve,
and then a measurement made to determine the number of atoms in the system. By performing
this procedure over different evolution times, it was established that the expectation value for
the number of atoms displayed an oscillatory behaviour, indicating that the state of the system
was a quantum mechanical superposition of atomic and molecular states, as opposed to a
classical mixture. The result is significant in that the state of the system is composed of a
superposition of two chemically distinct components.

Finally, we will also analyse the reduced BCS model, which is relevant not only for
metallic nanograins as described above, but also for the study of ultracold fermionic atomic
gases [59]. As is well known, for an ultracold fermionic gas the Pauli principle prohibits
all particles occupying the lowest energy level. The lowest possible energy of the system is
obtained by filling the Fermi sea. However, in analogy with metals it is believed that fermionic
gases should be able to form Cooper pairs, and as a consequence, undergo a phase transition
at a suitably low temperature into a fermionic condensate [60].

The aim of this exposition is to illustrate that the algebraic approach to the study of exactly
solvable models is a rich and elegant theory with wide applicability. In particular we show how
the theory applies to the systems of Bose–Einstein condensates and the reduced BCS model
discussed above. Some of these results have already been communicated [61–66], while other
results we will present are new. In each case we will determine the energy spectrum, as
well as the form factors for the computation of correlation functions, in terms of the Bethe
ansatz solution. Certain correlation functions can in fact be deduced directly from the energy
spectrum by using the Hellmann–Feynman theorem [67, 68]. Examples of this procedure
applied to the models discussed here can be found in [63–65]. Typically however, the form
factor approach is required to build general formulae for expectation values and correlation
functions. As a potential application of these results we point to the problem of quantifying
entanglement in the theory of quantum information. The role of correlation functions in the
characterization of entanglement has been discussed in [69–72].

Throughout, we have endeavoured to provide as much technical detail as possible for
the benefit of non-experts. The exceptions are the Slavnov formula for the scalar product
of states, the proof of which is beyond the scope of this review. For the proof we refer the
interested reader to [29]. Also, the orthogonality of the Bethe eigenstates will not be proved.
Details of this result can be found in [30]. The format of the review is as follows. We begin
in section 2 with a description of the four models we will examine. In section 3, we recall
the basic features of the quantum inverse scattering method for the construction of exactly
solvable models. While there already exist several excellent surveys of this approach [10–14],
we give a detailed account here in order to fix notation and conventions and make the review
self-contained. The central aspect is the introduction of the Yang–Baxter algebra associated
with the Lie algebra gl(2), which is a quadratic algebra. Several examples of realizations are
given. We show that in a particular limit, called the quasi-classical limit, the Yang–Baxter
algebra reduces to a Lie algebra, called the Gaudin algebra. Through a realization of the
Yang–Baxter algebra, the transfer matrix is constructed which leads to an exactly solvable
model. We also discuss a natural Z-graded structure of the Yang–Baxter algebra which will be
exploited in later constructions. Section 4 deals with the algebraic Bethe ansatz method in a
general context for the determination of the spectrum of the transfer matrix. Section 5 presents
the Slavnov formula for the scalar products of the states which arise in the algebraic Bethe
ansatz method of solution. We also discuss how, through the use of the Slavnov formula, the
form factors for the elements of the Yang–Baxter algebra can be obtained. Section 6 turns
to calculating the explicit exact solutions for the models. Formulae for the energy spectrum



R68 Topical Review

are determined, which are parametrized in terms of the roots of the Bethe ansatz equations.
Section 7 deals with the computation of form factors for each of the models introduced. In
all cases it is necessary to first consider the solution to the inverse problem, which involves
expressing a given operator in terms of the elements of the Yang–Baxter algebra. This needs
to be studied on a case by case basis. Once this is achieved, the form factors for that operator
can be determined. Concluding remarks are given in section 8.

2. Model Hamiltonians

Here we present, and give a description of, three models for Bose–Einstein condensates and
the reduced BCS model. Our main objective is to establish that each model is exactly solvable
through the algebraic Bethe ansatz. Throughout, there are no constraints imposed on the
coupling parameters for all models other than they are real, which is to ensure Hermiticity.

2.1. A model for two Josephson coupled Bose–Einstein condensates

Consider the following general Hamiltonian describing Josephson tunnelling between two
coupled Bose–Einstein condensates:

H = U11N
2
1 + U12N1N2 + U22N

2
2 + µ1N1 + µ2N2 − EJ

2

(
a
†
1a2 + a

†
2a1

)
(1)

where the operators ai, a
†
i , Ni = a

†
i ai are associated with two Heisenberg algebras with

relations [
ai, a

†
j

] = δij [ai, aj ] = [
a
†
i , a

†
j

] = 0.

The Hilbert space of states is given by the infinite-dimensional Fock space spanned by the
vectors

|m,n〉 = (
a
†
1

)m(
a
†
2

)n|0〉 m,n = 0, 1, 2, . . . ,∞. (2)

The model describes Josephson tunnelling between two condensates with tunnelling strength
EJ /2, the parameters Uij are the amplitudes for S-wave scattering and µi are chemical
potentials. The Hamiltonian commutes with the total particle number N = N1 + N2.

The above Hamiltonian under the constraint U = U11 = U22 = −U12/2 has been studied
widely using techniques other than the exact solution [48, 84–88]. For this case it is useful
to divide the parameter space into three regimes, namely Rabi (U/EJ � N−1), Josephson
(N−1 � U/EJ � N) and Fock (N � U/EJ ). In the Rabi and Josephson regions one expects
coherent superposition of the two condensates to be possible whereas in the Fock region the
two condensates will be, in some sense, localized. There is a correspondence between (1) and
the motion of a pendulum [48]. In the Rabi and Josephson regions this motion is semiclassical
(i.e., the energy level spacings are of order less than N) in contrast to the Fock case. For both
the Fock and Josephson regimes the analogy corresponds to a pendulum with fixed length,
while in the Rabi regime the length varies. An important problem is to study the behaviour
in the crossover regimes, particularly between the Josephson and Fock regimes which are
the most likely to occur in an experimental context [48]. A reliable method of doing this
is through the exact solution. The motivation to extend the solution to the case where the
couplings U11, U22, U12 for the S-wave scattering terms can be chosen arbitrarily is for the
description of a pair of Cooper pair boxes with capacitive coupling [46]. In the limit U22 → 0,
then 〈N2〉 � 〈N1〉, in which case the model can be considered as a single Cooper pair box
coupled to a reservoir.
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2.2. A model for homo-atomic–molecular Bose–Einstein condensates

Next we turn our attention to a two-mode model for an atomic–molecular Bose–Einstein
condensate with identical atoms. The Hamiltonian takes the form

H = UaaN
2
a + UacNaNc + UccN

2
c + µaNa + µcNc + �(a†a†c + c†aa) (3)

which acts on a basis of Fock states analogous to (2). Here, a† is the creation operator for an
atomic mode while c† creates a molecular mode. The parameters Uij again describe S-wave
scattering, µi are chemical potentials and � is the amplitude for interconversion of atoms and
molecules. The Hamiltonian commutes with the total atom number N = Na + 2Nc.

In the limit Uaa = Uac = Ucc = 0 this model was studied in [54], and analysed
numerically in [65] based on the Bethe ansatz solution. However, in order to compare with
experimental results, in which the S-wave scatterings are significant, one needs to analyse (3)
in its full generality. Estimates for the S-wave scattering parameters in the case of 87Rb are
given in [55].

2.3. A model for hetero-atomic–molecular Bose–Einstein condensates

The previous model can be extended to describe an atomic–molecular Bose–Einstein
condensate with two distinct species of atoms, denoted by a and b, which can combine
to produce a molecule c. For this case the Hamiltonian takes the form

H = UaaN
2
a + UbbN

2
b + UccN

2
c + UabNaNb + UacNaNc + UbcNbNc + µaNa

+ µbNb + µcNc + �(a†b†c + c†ba) (4)

which commutes with I = Na −Nb and the total atom number N = Na + Nb + 2Nc. Here the
model acts on the Fock space spanned by the vectors

|l,m, n〉 = (a†)l(b†)m(c†)n|0〉.
Let us point out that in the limit Uaa = Ubb = Ucc = Uab = Uac = Ubc = 0, equation (4) is
the Hamiltonian studied in [89, 90] modelling second harmonic generation in quantum optics.
Non-zero values of these parameters correspond to a Kerr effect.

2.4. The reduced BCS model

The physical properties of a metallic nanograin with pairing interactions are described by
the reduced BCS Hamiltonian [40]

H =
L∑

j=1

εjnj − g

L∑
j,k=1

c
†
k+c

†
k−cj−cj+. (5)

Above, j = 1, . . . ,L labels a shell of doubly degenerate single particle energy levels with
energies εj and nj = c

†
j+cj+ + c

†
j−cj− is the fermion number operator for level j . The

operators cj±, c
†
j± are the annihilation and creation operators for the fermions at level j . The

labels ± refer to time-reversed states.
One of the features of the Hamiltonian (5) is the blocking effect. For any unpaired fermion

at level j the action of the pairing interaction is zero since only paired fermions are scattered.
This means that the Hilbert space can be decoupled into a product of paired and unpaired
fermion states in which the action of the Hamiltonian on the space for the unpaired fermions
is automatically diagonal in the natural basis. In view of the blocking effect, it is convenient
to introduce hard-core boson operators bj = cj−cj+, b

†
j = c

†
j+c

†
j− which satisfy the relations(

b
†
j

)2 = 0
[
bj , b

†
k

] = δjk

(
1 − 2b

†
jbj

)
[bj , bk] = [

b
†
j , b

†
k

] = 0 (6)



R70 Topical Review

on the space excluding single particle states. In this setting the hard-core boson operators
realize the su(2) algebra in the pseudo-spin representation, which will be utilized below.

The original approach of Bardeen et al [36] to describe the phenomenon of
superconductivity in a bulk system was to employ a mean-field theory using a variational
wavefunction for the ground state

|�〉 =
L∏

i=1

(
uiI + vib

†
i

)|0〉 (7)

which has an undetermined number of electrons. The expectation value for the number
operator is then fixed by means of a chemical potential term µ, i.e. the grand canonical
ensemble is used. One of the predictions of the BCS theory is that the number of Cooper pairs
in the ground state of the system is given by the ratio �/d where � is the BCS ‘bulk gap’ and
d is the mean level spacing for the single electron energies. For nanoscale systems, this ratio is
of the order of unity, in seeming contradiction with the experimental results discussed above.
The explanation for this is that the mean-field approach is inappropriate in this instance, as
previously indicated.

3. Quantum inverse scattering method

The essential motivation for the quantum inverse scattering method is the construction of a
family of commuting matrices, known as transfer matrices. That is, we wish to construct an
operator t (u), where u ∈ C is called the spectral parameter, acting on some vector space,
which represents the Hilbert space of physical states. Further we seek that

[t (u), t (v)] = 0 ∀u, v ∈ C. (8)

There are two significant consequences of (8). The first is that t (u) may be diagonalized
independently of u, that is the eigenvectors of t (u) do not depend on u. This is the feature which
makes the Bethe ansatz approach viable. Secondly, t (u) commutes with all its derivatives, or
more formally, taking the series expansion

t (u) =
∞∑

k=−∞
Cku

k

it follows that

[Ck,Cj ] = 0 ∀k, j.

Thus for any Hamiltonian which is expressible as a function of the operators Ck only, each Ck

corresponds to an operator representing a constant of motion, since it will commute with the
Hamiltonian. When the number of independent conserved quantities is equal to the number
of degrees of freedom of the system, the model is said to be integrable.

Let V denote some fixed vector space of finite dimension n. The theory of exactly solvable
quantum systems in this setting begins with an invertible operator, depending on the spectral
parameter u,

R(u) ∈ End(V ⊗ V )

called the R-matrix. Here ‘End’ refers to the space of endomorphisms (square matrices),
so R(u) is effectively an n2 × n2 matrix whose entries are scalar functions of u. From
the R-matrix we define the Yang–Baxter algebra, denoted by Y, which is generated by the
monodromy matrix T (u), whose entries are elements of Y

R12(u − v)T1(u)T2(v) = T2(v)T1(u)R12(u − v). (9)
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The above equation acts in the three-fold space End(V ⊗ V ) ⊗ Y and the subscripts refer to
the components of End(V ⊗ V ). In terms of the elementary matrices ei

j , which have 1 in the
(i, j) position and zeros elsewhere, we may write

R(u) =
n∑

i,j,k,l=1

Rik
jl (u)ei

j ⊗ ek
l T (u) =

n∑
i,j=1

ei
j ⊗ T i

j (u).

Then

R12(u) =
n∑

i,j,k,l=1

Rik
jl (u)ei

j ⊗ ek
l ⊗ I

T1(u) =
n∑

i,j=1

ei
j ⊗ I ⊗ T i

j (u)

T2(u) =
n∑

i,j=1

I ⊗ ei
j ⊗ T i

j (u)

where I is the identity operator. In component form we may write
n∑

j,l=1

Rik
jl (u − v)T j

p (u)T l
q (v) =

n∑
j,l=1

T k
j (v)T i

l (u)Rlj
pq(u − v) (10)

so the Rik
jl (u) give the structure constants of the algebra. Note that Y is actually an infinite-

dimensional algebra, a basis for which
{
T i

j [k]
}

is obtained by taking the series expansions

T i
j (u) =

∞∑
k=−∞

ukT i
j [k].

Imposing that Y is an associative algebra leads, through repeated use of (9), to the following
equation in End(V ⊗ V ⊗ V ) ⊗ Y :

T1(u)T2(v)T3(w) = (T1(u)T2(v)) T3(w)

= R−1
12 (u − v) (T2(v)T1(u)) T3(w)R12(u − v)

= · · · = R−1
12 (u − v)R−1

13 (u − w)R−1
23 (v − w)T3(w)T2(v)T1(u)

× R23(v − w)R13(u − w)R12(u − v). (11)

Here Rjk(u) denotes the matrix in End(V ⊗ V ⊗ V ) acting non-trivially on the jth and kth
spaces and as the identity on the remaining space. In a similar way one may deduce that

T1(u)T2(v)T3(w) = T1(u) (T2(v)T3(w))

= R−1
23 (v − w)R−1

13 (u − w)R−1
12 (u − v)T3(w)T2(v)T1(u)

× R12(u − v)R13(u − w)R23(v − w). (12)

A sufficient condition for (11) and (12) to be equivalent is that the R-matrix satisfies the
Yang–Baxter equation acting in End(V ⊗ V ⊗ V ):

R12(u − v)R13(u − w)R23(v − w) = R23(v − w)R13(u − w)R12(u − v). (13)

The above shows that in this algebraic setting the Yang–Baxter equation arises as a natural way
to impose associativity of the Yang–Baxter algebra Y. It also appears in many other contexts,
such as classical two-dimensional statistical mechanics [7], knot theory [8, 73] and scattering
theory [74].
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Figure 1. Graphical representation of the Yang–Baxter equation. In the context of knot theory,
Rij (∞) denotes the crossing of string i over string j . The Yang–Baxter equation states that the
above two combinations of crossings are topologically equivalent. In scattering theory the matrix
elements of Rij (u − v) give the amplitudes for the two-body scattering of particles labelled i and
j , with rapidity variables u and v, respectively. The fact that the scattering depends only on the
difference u − v is a consequence of Lorentz invariance. The Yang–Baxter equation is a statement
of equivalence for the two factorizations of three-body scattering in terms of two-body scattering.
In classical two-dimensional statistical mechanics the matrix elements of Rij (u) give the allowed
vertex weights at the lattice site labelled by (i, j). In this instance u can be parametrized in terms
of the energy levels and temperature. The Yang–Baxter equation ensures the commutativity of the
row-to-row transfer matrix, from which the partition function is constructed.

Here, we will only concern ourselves with the gl(2) invariant R-matrix, which has the
form [3, 6]

R(u) = 1

u + η
(u · I ⊗ I + ηP )

=




1 0 0 0
0 b(u) c(u) 0
0 c(u) b(u) 0
0 0 0 1




(14)

with b(u) = u/(u + η), c(u) = η/(u + η) and η is an arbitrary complex parameter. Above,
P is the permutation operator which satisfies

P(x ⊗ y) = y ⊗ x ∀x, y ∈ V.

The R-matrix is gl(2) invariant in that

[R(u), g ⊗ g] = 0 (15)

where g is any 2 × 2 matrix.
For this case the Yang–Baxter algebra, denoted by Y [gl(2)] has four elements

T (u) =
(

T 1
1 (u) T 1

2 (u)

T 2
1 (u) T 2

2 (u)

)
. (16)
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For clarity and convenience we adopt the notation

A(u) = T 1
1 (u) B(u) = T 1

2 (u) C(u) = T 2
1 (u) D(u) = T 2

2 (u).

The full set of algebraic relations governed by (9) are

[A(u),A(v)] = [D(u),D(v)] = 0

[B(u), B(v)] = [C(u), C(v)] = 0

[A(u),D(v)] = η

u − v
(C(v)B(u) − C(u)B(v))

= η

u − v
(B(u)C(v) − B(v)C(u))

A(u)B(v) = u − v − η

u − v
B(v)A(u) +

η

u − v
B(u)A(v)

A(u)C(v) = u − v + η

u − v
C(v)A(u) − η

u − v
C(u)A(v)

D(u)B(v) = u − v + η

u − v
B(v)D(u) − η

u − v
B(u)D(v)

D(u)C(v) = u − v − η

u − v
C(v)D(u) +

η

u − v
C(u)D(v)

B(u)A(v) = u − v − η

u − v
A(v)B(u) +

η

u − v
A(u)B(v)

B(u)D(v) = u − v + η

u − v
D(v)B(u) − η

u − v
D(u)B(v)

C(u)A(v) = u − v + η

u − v
A(v)C(u) − η

u − v
A(u)C(v)

C(u)D(v) = u − v − η

u − v
D(v)C(u) +

η

u − v
D(u)C(v)

[B(u), C(v)] = η

u − v
(A(u)D(v) − A(v)D(u))

= η

u − v
(D(v)A(u) − D(u)A(v)).

(17)

Next, suppose that we have a realization of Y [gl(2)] acting on some vector space W ,
which we denote by π : Y [gl(2)] → End W . It is usual to refer to V as the auxiliary space
and W as the physical space. Note that as Y [gl(2)] is a quadratic algebra, any realization can
be multiplied by an overall scaling factor and still satisfy relations (17). For later convenience
we set

L(u) = π(T (u)) ∈ End(V ⊗ W)

which we refer to as an L-operator. Defining the transfer matrix through

t (u) = π (Tr(T (u))) = π(A(u) + D(u)) ∈ End W (18)

it follows from (9) that the transfer matrices commute for different values of the spectral
parameter, namely equation (8) is satisfied.

An important property of the Yang–Baxter algebra is that it has a co-multiplication
structure which allows us to build tensor product realizations. In particular, given two
L-operators LU ∈ End(V ⊗U) and LW ∈ End(V ⊗W), then L = LULW ∈ End(V ⊗U ⊗W)
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is also an L-operator as can be seen from

R12(u − v)L1(u)L2(v) = R12(u − v)LU
1 (u)LW

1 (u)LU
2 (v)LW

2 (v)

= R12(u − v)LU
1 (u)LU

2 (v)LW
1 (u)LW

2 (v)

= LU
2 (v)LU

1 (u)R12(u − v)LW
1 (u)LW

2 (v)

= LU
2 (v)LU

1 (u)LW
2 (v)LW

1 (u)R12(u − v)

= LU
2 (v)LW

2 (v)LU
1 (u)LW

1 (u)R12(u − v)

= L2(v)L1(u)R12(u − v).

Furthermore, if L(u) is an L-operator then so is L(u+α) for any α, since the R-matrix depends
only on the difference of the spectral parameters. This property will prove important in all
constructions given below.

3.1. The quasi-classical limit

The R-matrix (14) has the property

lim
η→0

R(u) = I ⊗ I

which is known as the quasi-classical property. For any such R-matrix it is appropriate to write

R(u) = I ⊗ I + ηR(u) + o(η2) T i
j (u) = δi

j I + ηT i
j (u) + o(η2)

and substitute into (10). Equating the second-order terms in η yields the following relations:

[
T i

p (u), T k
q (v)

] =
n∑

j=1

(
Rjk

pq(u − v)T i
j (u) − Rik

jq(u − v)T j
p (u)

+Rij
pq(u − v)T k

j (v) − Rik
pj (u − v)T j

q (v)
)

which we take to be the defining relations for the algebra denoted by Y , to be called the
Gaudin algebra. Gaudin used the quasi-classical limit to define classes of integrable spin
chain Hamiltonians with long-range interactions [75, 76]. The algebraic approach which
we follow here is due to Sklyanin [31, 77]. Observe that in the quasi-classical limit Y is
an infinite-dimensional Lie algebra in contrast to the quadratic algebra structure of Y. Any
realization of Y which admits the quasi-classical limit provides a realization of Y .

For the case of the gl(2) invariant R-matrix (14) let us write

A(u) = I + ηA(u) + o(η2) B(u) = ηB(u) + o(η2)

C(u) = ηC(u) + o(η2) D(u) = I + ηD(u) + o(η2).

From (17) we determine that the full relations for the algebra Y[gl(2)] are

[A(u),A(v)] = [B(u),B(v)] = 0

[C(u), C(v)] = [D(u),D(v)] = 0

[A(u),D(v)] = 0

[B(u), C(v)] = A(u) − A(v) + D(v) − D(u)

u − v

[A(u),B(v)] = B(u) − B(v)

u − v
[A(u), C(v)] = C(v) − C(u)

u − v

[D(u),B(v)] = B(v) − B(u)

u − v
[D(u), C(v)] = C(u) − C(v)

u − v
.
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3.2. Examples of realization of the Yang–Baxter algebra

In order to construct a specific model,we must address the question of determining a realization
of the Yang–Baxter algebra. Here we present several examples. The first realization comes
from the R-matrix itself, since it is apparent by setting w = 0 in (13) that we can make the
identification L(u) = R(u) such that a realization of (9) is obtained. This realization satisfies
the quasi-classical property, and is that used in the construction of the Heisenberg model
[10–14]. A second realization is given by L(u) = g (c-number realization), where g is an
arbitrary 2 × 2 matrix whose entries do not depend on u (although can depend on η). This
follows from the fact that (15) holds for any such g.

There is a realization in terms of canonical boson operators a, a† with the relation
[a, a†] = 1 which reads [78]

La(u) =
(

(1 + ηu)I + η2N ηa

ηa† I

)
(19)

where N = a†a. There also exists a realization in terms of the su(2) Lie algebra with
generators Sz and S± [10–14],

LS(u) = 1

u

(
uI + ηSz ηS−

ηS+ uI − ηSz

)
(20)

subject to the commutation relations

[Sz, S±] = ±S± [S+, S−] = 2Sz. (21)

When the su(2) algebra takes the spin-1/2 representation the resulting L-operator is equivalent
to that given by the R-matrix. Another is realized in terms of the su(1, 1) generators Kz and
K± [79, 80],

LK(u) = 1

u

(
uI + ηKz ηK−

−ηK+ uI − ηKz

)
(22)

with the commutation relations

[Kz,K±] = ±K± [K+,K−] = −2Kz. (23)

Each of the realizations La(u), LS(u) and LK(u) satisfies the quasi-classical property, and
thus affords a realization of the Gaudin algebra.

The discerning reader may note that LS(u) and LK(u) are in fact equivalent, which results
from the Lie algebra homomorphism ϒ : su(2) → su(1, 1) defined by

ϒ(Sz) = Kz ϒ(S+) = −K+ ϒ(S−) = K−

such that (21) is mapped to (23). For convenience we make the distinction between these
two L-operators as the transformation ϒ is non-unitary. This permits us to avoid the use of
non-unitary realizations of the su(2) algebra below. (Although, as will be seen, the realizations
of the Yang–Baxter algebra may not be unitary.)

3.3. Z-graded structure and Z-graded realizations of the Yang–Baxter algebra

The Yang–Baxter algebra Y [gl(2)] carries a Z-graded structure that can be exploited in the
construction of models of Bose–Einstein condensates, as explained in [66], which we now
recount. We introduce an auxiliary operator Z, called the grading operator, satisfying the
relations

[Z,X(u)] = p{X(u)} · X(u) (24)
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where X = A,B,C or D and

p{A(u)} = p{D(u)} = 0 p{B(u)} = 1 p{C(u)} = −1.

We call p{X(u)} ∈ Z the gradation of X(u), and extend the gradation operation to the entire
algebra by the requirement

p{θ · φ} = p{θ} + p{φ} ∀θ, φ ∈ A.

This definition for the grading operator is consistent with the defining relations (17).
Let us now define a class of realizations of Y [gl(2)] which we call Z-graded realizations.

We say that a vector space W , equipped with an endomorphism z, is a Z-graded vector space,
denoted by (W, z), if it admits a decomposition into subspaces

W =
∞⊕

j=−∞
Wj

such that

zWj = j · Wj j ∈ Z.

Note that some of the Wj may be trivial subspaces. Formally, the grading operator can be
used to define the following projection operators:

Pj =
∞∏

k=−∞
k 
=j

(z − kI)

(j − k)
(25)

such that

PkPj = δkjPj PkWj = δkjWk.

We say that a Z-graded vector space

W ′ =
∞⊕

j=−∞
W ′

j

is equivalent to W if for some k ∈ Z there exists a vector space isomorphism between W ′
j and

Wj+k for all j . This terminology is motivated by the fact that for a given (W, z) one can always
generate another Z-graded space (W ′, z′) through the mappings W ′

j → Wj+k, z
′ → z − kI

for any k ∈ Z.
For a given Z-graded W we say that π : Y [gl(2)] → End W provides a Z-graded

realization of Y [gl(2)] if π(Z) = z and relations (17) and (24) are preserved. In such a case
we can write

π(X(u)) =
∞∑

j=−∞
X(u, j)

and the matrices X(u, j) satisfy

X(u, j)Wk = 0 for j 
= k.

More specifically, this means that for |ψj 〉 ∈ Wj we have

π(X(u)Y (v))|ψj 〉 = X(u, j + p{Y (u)})Y (v, j)|ψj 〉.
In view of the equivalence of Z-graded vector spaces defined above, there can also exist

equivalent realizations. We can define a realization π ′ equivalent to π by specifying some
k ∈ Z such that

π ′(Z) = π(Z − kI)
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and for

π ′(X(u)) =
∞∑

j=−∞
X′(u, j)

the matrices X′(u, j) are defined by

X′(u, j) = X(u, j + k) ∀j ∈ Z.

For the Z-graded case we may express the transfer matrix as

t (u) =
∞∑

j=−∞
t (u, j)

such that

t (u, j)Wk = 0 for j 
= k

and

[t (u, j), t (v, k)] = 0 ∀j, k ∈ Z u, v ∈ C.

Since p{t (u)} = 0, the diagonalization of t (u) is thus reduced to the diagonalization of each
of the matrices t (u, j) on the Z-graded component Wj , where we have

[t (u, j), t (v, j)] = 0 ∀u, v ∈ C.

We may restrict our attention to the case of t (u, 0), as each t (u, j) is equivalent to some
t ′(u, 0) through the use of equivalent realizations as introduced above.

3.4. Examples of Z-graded realizations

Next we give two non-trivial Z-graded realizations of the algebra Y [gl(2)]. One is
expressible in terms of two Heisenberg algebras with generators ai, a

†
i , i = 1, 2, and reads

X(u, j) = X̃(u, j)Pj with

Ã(u, j)) = u2 + ηuN + η2N1N2 − η(N1 − N2)ω(N + jI) − ω2(N + jI) + a
†
2a1

B̃(u, j) = (u + ω(N + jI) + ηN1)a2 + η−1a1

C̃(u, j) = a
†
1(u − ω(N + jI) + ηN2) + η−1a

†
2

D̃(u, j) = a
†
1a2 + η−2

Z = k · I − N.

(26)

Above, k is an arbitrary scalar, Pj are the projections defined by (25), Ni = a
†
i ai, N = N1 +N2

and ω(x) is an arbitrary polynomial function of x. The operators act on the Fock space
spanned by the basis vectors given by (2). Note that in the case when ω(x) is constant, the
above realization reduces to that discussed in [49, 50, 62–64] and is factorizable into two local
realizations of the Yang–Baxter algebra expressible in terms of the two Heisenberg algebras,
namely

L(u) = η−2La
1(u − η−1 + ω)La

2(u − η−1 − ω).

It is important to note that for generic ω(x) no such factorization exists.
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Another Z-graded realization of the Yang–Baxter algebra is X(u, j) = X̃(u, j)Pj with

Ã(u, j) = −ηu2 + u(1 − η2(Kz + Nc) − ηω(Kz + Nc + jI))

+ ηKz − η2Kzω(Kz + Nc + jI) − η3NcK
z + η2cK+

B̃(u, j) = η(1 − ηu − ηω(Kz + Nc + jI) − η2Nc)K
− − ηc(u − ηKz)

(27)
C̃(u, j) = ηc†(u + ηKz) − ηK+

D̃(u, j) = u − ηKz + η2c†K−

Z = k · I − Kz − Nc + κ.

Above, k is again arbitrary, the operators c, c† form a Heisenberg algebra, with Nc = c†c,
and as before the operators Kz,K+,K− satisfy the su(1, 1) relations (23). It is assumed that
the su(1, 1) operators are realized in terms of irreducible representations of lowest weight κ .
As in the previous example, ω(x) is an arbitrary polynomial function of x and the above
realization is factorizable only in the case when ω(x) is constant. In this instance we have

L(u) = ugLa(u − η−1 + ω)LK(u)

where g = diag(−1, 1).

4. Algebraic Bethe ansatz method of solution

A key step in successfully applying the algebraic Bethe ansatz approach is finding a suitable
pseudovacuum state, |χ〉, which has the properties

A(u)|0〉 = a(u)|χ〉 B(u)|0〉 = 0 C(u)|0〉 
= 0 D(u)|0〉 = d(u)|χ〉
where a(u) and d(u) are scalar functions. Note that for ease of notation throughout we will
omit the symbol π denoting the realization of Y [gl(2)]. Next choose the Bethe state

|�v〉 ≡ |v1, . . . , vM 〉 =
M∏

i=1

C(vi)|χ〉. (28)

Note that because [C(u), C(v)] = 0, the ordering is not important in the product of (28). The
approach of the algebraic Bethe ansatz is to use relations (17) to determine the action of t (u)

on |�v〉. First let us consider the action of A(u) on |�v〉, namely

A(u)|�v〉 = A(u)C(ui)|�vi〉
where

|�vi〉 ≡ |v1, . . . , vi−1, vi+1, . . . , vM 〉.
Now

A(u)|�v〉 = u − vi + η

u − vi

C(vi)A(u)|�vi〉 − η

u − vi

C(u)A(vi)|�vi〉

= u − vi + η

u − vi

C(vi)A(u)C(vj )|�vij 〉 − η

u − vi

C(u)A(vi)C(vj )|�vij 〉

=
(

u − vi + η

u − vi

) (
u − vj + η

u − vj

)
C(vi)C(vj )A(u)|�vij 〉

−
(

u − vi + η

u − vi

) (
η

u − vj

)
C(vi)C(u)A(vj )|�vij 〉

−
(

η

u − vi

) (
vi − vj + η

vi − vj

)
C(u)C(vj )A(vi)|�vij 〉

+

(
η

u − vi

) (
η

vi − vj

)
C(u)C(vi )A(vj )|�vij 〉 (29)
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where

|�vij 〉 ≡ |v1, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vM 〉.
Proceeding further we find the general form

A(u)|�v〉 =
(

M∏
i=1

u − vi + η

u − vi

) (
M∏

i=1

C(vi)

)
A(u)|χ〉

− η

u − vi


 M∏

j 
=i

vi − vj + η

vi − vj


 C(u)


 M∏

k 
=i

C(vk)


 A(vi)|χ〉

+ other linearly independent terms

= a(u)

(
M∏
i=1

u − vi + η

u − vi

)
|�v〉 − ηa(vi)

u − vi


 M∏

j 
=i

vi − vj + η

vi − vj


 C(u)|�vi〉

+ other linearly independent terms.

Above, each of the other linearly independent terms is a vector of the form C(u)|�vj 〉, j 
= i,
multiplied by some scalar. There are no other possibilities. To determine what the coefficients
are we note that the above equation is valid for any choice of i. Hence, we conclude that

A(u)|�v〉 = a(u)

(
M∏
i=1

u − vi + η

u − vi

)
|�v〉 −

M∑
i=1

ηa(vi)

u − vi


 M∏

j 
=i

vi − vj + η

vi − vj


 C(u)|�vi〉.

The coefficients of the terms C(u)|�vi〉 are called unwanted terms for reasons that will soon
become apparent.

We now perform the same procedure for D(u),

D(u)|�v〉 = D(u)C(vi )|�vi〉
=

(
u − vi − η

u − vi

)
C(vi)D(u)|�vi〉 +

η

u − vi

C(u)D(vi )|�vi〉

= d(u)

(
M∏

i=1

u − vi − η

u − vi

)
|�v〉 +

M∑
i=1

ηd(vi)

u − vi


 M∏

j 
=i

vi − vj − η

vi − vj


 C(u)|�vi〉. (30)

The final result for the action of the transfer matrix is

t (u)|�v〉 = (A(u) + D(u))|�v〉

= �(u, �v)|�v〉 −
M∑
i

ηa(vi)

u − vi


 M∏

j 
=i

vi − vj + η

vi − vj


 C(u)|�vi〉

+
M∑
i=1

ηd(vi)

u − vi


 M∏

j 
=i

vi − vj − η

vi − vj


 C(u)|�vi〉 (31)

where

�(u, �v) = a(u)

M∏
i=1

u − vi + η

u − vi

+ d(u)

M∏
i=1

u − vi − η

u − vi

. (32)

The above shows that |�v〉 becomes an eigenstate of the transfer matrix with eigenvalue (32)
whenever the unwanted terms cancel. This occurs when the Bethe ansatz equations

a(vi)

d(vi)
=

M∏
j 
=i

vi − vj − η

vi − vj + η
i = 1, . . . ,M. (33)
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are satisfied. Throughout we adopt the notation

{vi} ≡ {v1, v2, . . . , vM }
for such a solution.

Note that in the derivation of the Bethe ansatz equations it is required that vi 
= vj ∀i, j .
This is a result of the Pauli principle for Bethe ansatz solvable models, as developed in [81]
for the one-dimensional Bose gas with delta-function interactions. For generic functions
a(u), d(u), essentially the same argument as [81] can be applied to draw the same conclusion.
To give an indication why this is the case, consider (29) in the limit vi → vj

A(u)|�v〉 =
(

u − vi + η

u − vi

)2

C(vi)
2A(u)|�vij 〉 −

(
u − vi + η

u − vi

) (
η

u − vi

)
C(vi)C(u)A(vi)|�vij 〉

+

(
η2

u − vi

)
C(u)

[
d

dw
C(vi) · A(vi) − C(vi) · d

dw
A(vi)

]
|�vij 〉.

This equation shows that new types of unwanted terms occur which depend on the derivatives
of the elements of Y [gl(2)], and this leads to an overdetermined system of equations which
do not admit a solution. Another viewpoint is to note that (up to an overall scaling factor,
and under suitable assumptions for the forms of a(u) and d(u)) the eigenvalues �(u, �v) are
analytic functions of u. Assuming that the poles in (32) are simple then the Bethe ansatz
equations (33) are equivalent to the statement that the residue vanishes at each pole, i.e.,

lim
u→vi

(u − vi)�(u, �v) = 0

leads to (33). For non-simple poles however there are additional Bethe ansatz equations,
which cannot be satisfied. To illustrate this, we consider the simplest case where, for all values
of η, all poles are simple except for one, say at u = vj , which is of second order. In such a
case, let us write

�(u, �v) = a(u)
(u − vj + η)2

(u − vj )2

M∏
k 
=j

(u − vk + η)

(u − vk)
+ d(u)

(u − vj − η)2

(u − vj )2

M∏
k 
=j

(u − vk − η)

(u − vk)
.

Analyticity of �(u, �v) requires

0 = lim
u→vj

(u − vj )
2�(u, �v)

leading to the Bethe ansatz equations

a(vj )

d(vj )
= −

M∏
k 
=j

vj − vk − η

vj − vk + η
.

In particular note that

lim
η→0

a(vj )

d(vj )
= −1. (34)

Furthermore

0 = lim
u→vj

(u − vj )�(u, �v)

= lim
u→vj

d

du
[(u − vj )

2�(u, �v)]

= lim
u→vj


a′(u)(u − vj + η)2

M∏
k 
=j

(u − vk + η) + 2a(u)

M∏
k=1

(u − vk + η)
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+ a(u)(u − vj + η)2
M∑

l 
=j

M∏
k 
=l,j

(u − vk + η)

+ d ′(u)(u − vj − η)2
M∏

k 
=j

(u − vk − η) + 2d(u)

M∏
k=1

(u − vk − η)

+ d(u)(u − vj − η)2
M∑
l 
=j

M∏
k 
=l,j

(u − vk − η)




= 2ηa(vj)

M∏
k 
=j

(vj − vk + η) − 2ηd(vj )

M∏
k 
=j

(vj − vk − η) + o(η2).

The above implies that

lim
η→0

a(vj )

d(vj )
= 1

in contradiction to (34), proving the claim that one cannot have a single second-order pole. The
extension to more complicated non-simple pole structures, though tedious, is straightforward.

Finally, the following identity is useful and is easily derived from the Bethe ansatz
equations:

M∏
i=1

a(vi) =
M∏
i=1

d(vi). (35)

4.1. Extension to Z-graded realizations

In order to formulate the algebraic Bethe ansatz solution for the class of Z-graded realizations,
we begin with the observation from (17) that the following relations hold (amongst others):

[A(u, j),A(v, j)] = [D(u, j),D(v, j)] = 0

B(u, j)B(v, j − 1) = B(v, j)B(u, j − 1)

C(u, j)C(v, j + 1) = C(v, j)C(u, j + 1)

A(u, j)C(v, j + 1) = u − v + η

u − v
C(v, j + 1)A(u, j + 1) − η

u − v
C(u, j + 1)A(v, j + 1)

D(u, j)C(v, j + 1) = u − v − η

u − v
C(v, j + 1)D(u, j + 1) +

η

u − v
C(u, j + 1)D(v, j + 1).

(36)

Again, we assume the existence of a pseudovacuum vector |χ〉 ∈ Wk such that

A(u, k)|χ〉 = a(u, k)|χ〉 B(u, k)|χ〉 = 0

C(u, k)|χ〉 
= 0 D(u, k)|χ〉 = d(u, k)|χ〉.
In particular, for the realization (26) the Fock vacuum serves as the pseudovacuum. In the
case of (27) we choose the pseudovacuum to be the tensor product of the Fock vacuum with
the su(1, 1) lowest weight state of weight κ .

The above implies that |χ〉 is a maximal weight vector with respect to Z. Without loss of
generality we can choose k = M , due to the equivalence of realizations discussed earlier, and
look for Bethe states defined by

|�v〉 = C(v1, 1)C(v2, 2) · · ·C(vM,M)|χ〉. (37)
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It is easy to check that the above Bethe state is symmetric with respect to interchange of the
variables vi , a feature which plays a crucial role below. In particular, this means that we may
write

|�v〉 = C(vi, 1)|�vi〉
= C(vi, 1)C(vj , 2)|�vij 〉
= C(vj , 1)C(vi, 2)|�vij 〉

where now

|�vi〉 = C(v1, 2) · · ·C(vi−1, i)C(vi+1, i + 1) · · ·C(vM,M)|χ〉
|�vij 〉 = C(v1, 3) · · · C(vi−1, i + 1)C(vi+1, i + 2)

× · · · C(vj−1, j)C(vj+1, j + 1) · · ·C(vM,M)|χ〉.
Acting A(u, 0) and D(u, 0) on the Bethe state we have, by following the general procedure

detailed above,

A(u, 0)|�v〉 = a(u,M)

(
M∏
i=1

u − vi + η

u − vi

)
|�v〉 −

M∑
i=1

ηa(vi,M)

u − vi


 M∏

j 
=i

vi − vj + η

vi − vj


 C(u, 1)|�vi〉

D(u, 0)|�v〉 = d(u,M)

(
M∏
i=1

u − vi − η

u − vi

)
|�v〉 +

M∑
i=1

ηd(vi,M)

u − vi


 M∏

j 
=i

vi − vj − η

vi − vj


 C(u, 1)|�vi〉.

Requiring |�v〉 to be an eigenstate of t (u, 0) leads to the Bethe ansatz equations

a(vi,M)

d(vi,M)
=

M∏
j 
=i

vi − vj − η

vi − vj + η
i = 1, . . . ,M (38)

and the corresponding eigenvalue of the matrix t (u, 0) is

�(u, 0, �v) = a(u,M)

M∏
i=1

u − vi + η

u − vi

+ d(u,M)

M∏
i=1

u − vi − η

u − vi

. (39)

5. Scalar products of states

Recall that in the usual algebraic Bethe ansatz for the algebra Y [gl(2)] there is a formula
originally due to Slavnov [32] (see also [13, 29]) for the wavefunction scalar products, which
is

S( �w : �v) = { �w|�v〉
= {�v| �w〉
= det F∏M

k>l(vk − vl)
∏M

i<j (wi − wj)
(40)

with the entries of the M × M matrix F given by

Fij = ηd(wi)

(vj − wi)


a(vj )

M∏
k 
=i

(vj − wk + η) − d(vj )

M∏
k 
=i

(vj − wk − η)


 (41)

and {�u| is the left vector defined by

{�u| = 〈χ |B(uM) · · · B(u1)
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for any choice of {ui}. Above, {wi} provide a solution to the Bethe ansatz equations (38)
and the parameters {vj } are arbitrary. In using the Slavnov formula it is assumed that the
pseudovacuum state has norm equal to 1. Defining

G = F · �

where � is a diagonal matrix with entries

�ij = δij

(vj − wj)∏M
k=1(vj − wk)

the Slavnov formula may be expressed in the equivalent form

S( �w : �v) =
∏M

p=1

∏M
q 
=p(vp − wq)∏M

k>l(vk − vl)
∏M

i<j (wi − wj)
det G (42)

with

Gij = ηd(wi)(vj − wj)

(vj − wi)2


a(vj )

M∏
k 
=i

(vj − wk + η)

(vj − wk)
− d(vj )

M∏
k 
=i

(vj − wk − η)

(vj − wk)


 . (43)

We will find it convenient to use both forms (40) and (42) of the Slavnov formula.
The Yang–Baxter algebra Y [gl(2)] admits a conjugation operation † : Y [gl(2)] →

Y [gl(2)] defined by

A(u)† = A(u∗) B(u)† = C(u∗) C(u)† = B(u∗) D(u)† = D(u∗)

and extended to all of Y [gl(2)] through

(θ · φ)† = φ† · θ † ∀θ, φ ∈ Y [gl(2)]

such that the defining relations (17) are preserved. Above, ∗ is used to denote complex
conjugation. Consequently the right vector

|�v} = {�v|†
= B(v∗

1 )† · · ·B(v∗
M)†|χ〉

is also an eigenvector of the transfer matrix whenever the Bethe ansatz equations for the
parameters {vi} are satisfied. However, it is apparent that the Z-graded realizations (26) and
(27) we have introduced are not unitary, and generally

〈�v| = |�v〉† 
= {�v|.
On the other hand, numerical analysis for the models (1), (3), (4) and (5) indicates that for fixed
particle numbers, and generic values of the coupling parameters, the energy spectrum is free
of degeneracies. This is presumably due to the fact that the only Lie algebra symmetries for
these models are u(1) invariances corresponding to conservation of particle numbers, and the
non-degenerate spectra are examples of Hund’s non-crossing rule [82, 83]. We also assert that
for a given {vi}, satisfying the Bethe ansatz equations (59), this set of parameters is equivalent
to {v∗

i }, i.e., v∗
i = vj for some j = 1, . . . ,M . It is clear that for {vi} satisfying (33), so does

{v∗
i } (in all our examples, as the Hamiltonians are real, the functions a(u) and d(u) are real,

as will be seen below). Since the eigenvalues of the Hamiltonian are real, we have

E(�v) = E∗(�v) = E(�v∗).

Under the belief that the spectrum is multiplicity free, we then deduce {vi} ∼ {v∗
i }. Whenever

this is the case, we can conclude that the eigenvectors are real and

〈�v| = ζ(�v){�v| (44)
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for some non-zero real-valued scalar ζ(�v). Thus the Slavnov formula can be invoked for the
computation of form factors. Throughout we will always assume (44) to be the case, which
implies that

{ �w|�v〉 = 0 for �v 
= �w (45)

whenever {vi} and {wj } both satisfy the Bethe ansatz equations. This result (45) can be proved
directly, independent of (44), as shown in [30]. Note when �w = �v we need to take a limit for
the diagonal entries of F to compute the square of the norm. This yields

Fii = d(vi)

(
a′(vi)

M∏
k=1

(vi − vk + η) − d ′(vi)

M∏
k=1

(vi − vk − η)

)

+ d(vi)


 M∑

l 
=i

a(vi)

vi − vl + η

M∏
k=1

(vi − vk + η) −
M∑
l 
=i

d(vi)

vi − vl − η

M∏
k=1

(vi − vk − η)




(46)

where the prime denotes the derivative.
From the Slavnov formula the matrix elements of the operatorsB(u), C(u) follow directly,

as the set of parameters {vi} are arbitrary. We will now derive an expression for the form
factors of the operator D(u), which will prove useful for later calculations. From expression
(30) for the action of D(u) on an arbitrary Bethe vector we may deduce that for both {vi} and
{wj } satisfying the Bethe ansatz equations

{ �w|D(u)|�v〉 = d(u)


 M∏

p=1

u − vp − η

u − vp


 { �w|�v〉 +

M∑
q=1

ηd(vq)

u − vq


 M∏

j 
=q

vq − vj − η

vq − vj


 { �w|C(u)|�vi〉

= d(u)


 M∏

p=1

u − wp − η

u − wp





S( �w : �v) +

M∑
q=1

ηd(vq)

(u − vq)d(u)

(
M∏

k=1

u − wk

u − wk − η

)

×

 M∏

j 
=q

vq − vj − η

vq − vj


 S( �w : v1, . . . , vq−1, u, vq+1, . . . , vM)




= d(u)∏M
k>l(vk − vl)

∏M
i<j (wi − wj)


 M∏

p=1

u − wp − η

u − wp




×

det F + �(u)

M∑
q=1

det F (q)




where the matrices F (q) are defined by

F
(q)

pl = Fpl for l 
= q

F (q)
pq = Qpq (47)

Q is the rank-1 matrix with elements

Qij = ηd(wi)d(vj )

(u − wi)(u − wi − η)


1 − a(u)

d(u)


 M∏

k 
=i

u − wk + η

u − wk − η





 M∏

l=1

(vj − vl − η)
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and

�(u) =
(

M∏
k=1

u − wk

u − vk

)
. (48)

Using the fact that for �v 
= �w, det F = 0, whereas for �v = �w,�(u) = 1, allows us to write

{ �w|D(u)|�v〉 = �(u)d(u)∏M
k>l(vk − vl)

∏M
i<j (wi − wj)

(
M∏
i=1

u − wi − η

u − wi

) 
det F +

M∑
j=1

det F (j)




= �(u)d(u)∏M
k>l(vk − vl)

∏M
i<j (wi − wj)

(
M∏
i=1

u − wi − η

u − wi

)
det (F + Q) . (49)

The last line above follows from the fact that if X is any M × M matrix and Y is any rank-1
M × M matrix then

det(X + Y ) = det X +
M∑

j=1

det X(j)

where

X
(j)

ij = Yij

X
(j)

kl = Xkl for j 
= l.

A similar result can be derived for the form factors of A(u). Alternatively, one can obtain
them from (32) and (49) through

{ �w|A(u)|�v〉 = �(u, �v){ �w|�v〉 − { �w|D(u)|�v〉. (50)

The Slavnov formula can be extended to include generic Z-graded realizations as noted
in [66]. This is achieved by simply replacing a(u) and d(u) with a(u,M) and d(u,M) in (41)
and (43). All the results derived above also extend analogously to the Z-graded case.

5.1. The quasi-classical limit

Assuming that the quasi-classical limit exists and in particular

a(u) = 1 + ηa(u) + o(η2) d(u) = 1 + ηd(u) + o(η2)

it is straightforward to obtain the Slavnov formula in the quasi-classical limit. We obtain
directly from (40) and (42)

S( �w : �v) = 〈χ |B(wM) · · ·B(w1)C(v1) · · · C(vM)|χ〉
= 〈χ |B(vM) · · ·B(v1)C(w1) · · · C(wM)|χ〉

=
∏M

p=1

∏M
q 
=p(vp − wq)∏M

k>l(vk − vl)
∏M

i<j (wi − wj)
detG

= 1∏M
k>l(vk − vl)

∏M
i<j (wi − wj)

detF (51)

where the entries of the M × M matrices G and F are given by

Gij =

a(vj ) − d(vj ) +

M∑
k 
=i

2

vj − wk


 (vj − wj)

(vj − wi)2
(52)
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Fij =

a(vj ) − d(vj ) +

M∑
k 
=i

2

vj − wk


 ∏M

l=1(vj − wl)

(vj − wi)2
. (53)

Above, the parameters {wi} are to satisfy the quasi-classical limit of the Bethe ansatz equations

a(wi) − d(wi) =
M∑
k 
=i

2

wk − wi

i = 1, . . . ,M (54)

while the set {vj } are arbitrary.
Specializing to the case when {vi} = {wi} leads to the formula

S(�v : �v) = detK

where

Kii = a′(vi) − d ′(vi) −
M∑

k 
=i

2

(vi − vk)2
Kij = 2

(vi − vj )2
for i 
= j.

We can perform a similar treatment to yield the quasi-classical limit of (49). The terms
in η2M give the scalar product of the states in the quasi-classical limit. The terms in η2M+1

give not only the form factor for D(u) but also the next order terms in the expansion of the
scalar product, so some care needs to be taken in order to identify the appropriate terms. The
result is

{ �w|D(u)|�v〉 = �(u)∏M
k>l(vk − vl)

∏M
i<j (wi − wj)





d(u) −

M∑
p=1

1

u − wp


 detF +

M∑
q=1

detF (q)




(55)

where F (q) is defined in terms of F and Q in analogy with (47) and

Qij (u) =
∏M

l 
=j (vj − vl)

(u − wi)2


a(u) − d(u) +

M∑
k 
=i

2

u − wk


 . (56)

6. Exact solution of the models

6.1. Solution for the model of two Josephson coupled Bose–Einstein condensates

It is an algebraic exercise to show that the Hamiltonian (1) is related to the matrix t̃ (u, 0) =
Ã(u, 0) + D̃(u, 0) obtained through (26) via

H = −EJ

2
[t̃ (0, 0) − η−2 + (αN + β)2 − ησN − ηδN2]

where we have chosen ω(N) = αN + β and the coupling constants are identified as

η2 = 2(U11 + U22 − U12)

EJ

α = U11 − U22

ηEJ

β = µ1 − µ2

ηEJ

σ = µ1 + µ2

ηEJ

δ = U11 + U22

ηEJ

.

(57)

Noting that

N = η−1 dt̃

du
(0, 0)
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the above demonstrates that the Hamiltonian (1) is expressible solely in terms of the matrix
t̃ (u, 0) and its derivative.

Since [H,N] = 0, the Hamiltonian is block diagonal in the Fock basis (2). Thus on
a subspace of the Fock space with fixed particle number N, the diagonalization of t̃ (u, 0) is
equivalent to the diagonalization of t (u, 0) presented earlier in the Bethe ansatz framework.
It is easily determined that for this case, the total particle number N = M and

a(u,N) = u2 − (αN + β)2 d(u,N) = η−2.

From (38) and (39) we deduce the solution of (1) for the energy spectrum to be

E(�v) = −EJ

2

[
η−2

N∏
i=1

vi + η

vi

− (αN + β)2
N∏

i=1

vi − η

vi

− η−2 + (αN + β)2 − ησN − ηδN2

]

(58)

where the parameters {vi} are subject to the Bethe ansatz equations

η2(
v2

i − (αN + β)2) =
N∏

j 
=i

vi − vj − η

vi − vj + η
. (59)

6.2. Solution for the model of homo-atomic–molecular Bose–Einstein condensates

In terms of a realization of the algebra su(1, 1) through

K+ = (a†)2

2
K− = a2

2
Kz = 2Na + 1

4
. (60)

one may establish that the relation between the Hamiltonian (3) and the corresponding matrix
t̃ (u, 0) = Ã(u, 0) + D̃(u, 0) arising from the realization (27) of the Yang–Baxter algebra is

H = σ + δ(N/2 + 1/4) + γ (N/2 + 1/4)2 + 2η−2�t̃(0, 0)

with
dt̃

du
(0, 0) = 2 − η(η + α)(N/2 + 1/4) − ηβ.

Above, we have chosen

ω(Kz + Nc) = α(Kz + Nc) + β

= α(N/2 + 1/4) + β

and the following identification has been made for the coupling constants:

η = 4Uaa + Ucc − 2Uac

2�
α = Ucc − 4Uaa

2�
β = 2µc − 4µa + 4Uaa − Uac

4�

σ = Uaa − 2µa

4
δ = 2µc − Uac

2
γ = Ucc.

We deduce

a(u,M) = (u + ηκ) (1 − ηu − η (α(M + κ) + β)) d(u,M) = u − ηκ

and by the same argument as in the previous example, we conclude that the exact solution for
the energy spectrum of (3) is determined by (38) and (39) which reduces to

E(�v) = σ + δ(M + κ) + γ (M + κ)2

+ 2η−1κ�

[
(1 − η (α(M + κ) + β))

M∏
i=1

vi − η

vi

−
M∏

i=1

vi + η

vi

]
(61)
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where the parameters {vi} satisfy the Bethe ansatz equations

[1 − ηvi − η(α(M + κ) + β)]

(
vi + ηκ

vi − ηκ

)
=

M∏
j 
=i

vi − vj − η

vi − vj + η
. (62)

For the representation (61) of the su(1, 1) algebra there are two lowest weight vectors, namely,
the Fock vacuum |0〉 and the one particle state a†|0〉. It follows from (60) that the allowed
values for κ in (61) and (62) are κ = 1/4, 3/4. This demonstrates that the solution of the
model depends on whether the total particle number N = 2M + 2κ − 1/2 is even or odd, the
effects of which on the energy spectrum can be seen through numerical analysis (cf [65]).

6.3. Solution for the model of hetero-atomic–molecular Bose–Einstein condensates

In order to show the solvability of the model (4), we adopt the realization of the su(1, 1)

algebra given by

K+ = a†b† K− = ab Kz = Na + Nb + 1

2
(63)

and observe that the operator I = Na − Nb commutes with the su(1, 1) algebra in this
representation, hence taking a constant value in any irreducible representation. Due to the
symmetry upon interchanging the labels a and b, we can assume without loss of generality
that the eigenvalues of I are non-negative. In particular, note then that the lowest weight states
for this realization are of the form

|m〉 = (a†)m√
m!

|0〉 m = 0, 1, 2, . . . ,∞
and Kz|m〉 = (m/2 + 1/2)|m〉. We conclude that the lowest weight labels κ can be taken from
the set {1/2, 1, 3/2, . . .} and the eigenvalue of I in the irreducible representation labelled by
κ is 2κ − 1.

For this case the relation between the Hamiltonian (4) and the corresponding matrix
t̃ (u, 0) from (27) is

H = σ + δ(N/2 + 1/2) + λ(N/2 + 1/2)2 + ρI + νI2 + ξI(N/2 + 1/2) + η−2�t̃(0, 0) (64)

with
dt̃

du
(0, 0) = 2 − η(η + α)(N/2 + 1/2) − ηγ I − ηβ.

Above, we have chosen

ω(Kz + Nc) = α(Kz + Nc) + γ (2κ − 1) + β

= α(N/2 + 1/2) + γ I + β

and the coupling constants are related through

η = Uaa + Ubb + Ucc + Uab − Uac − Ubc

�

α = Ucc − Uaa − Ubb − Uab

�

β = 2Uaa + 2Ubb + 2Uab − Uac − Ubc + 2µc − 2µa − 2µb

2�

γ = 2Ubb − 2Uaa + Uac − Ubc

2�

σ = Uaa + Ubb + Uab − 2µa − 2µb

4
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δ = 2µc − Uac − Ubc

2
λ = Ucc

ρ = Ubb − Uaa + µa − µb

2

ν = Uaa + Ubb − Uab

4

ξ = Uac − Ubc

2
.

We find

a(u,M) = (u + ηκ) (1 − ηu − η (α(M + κ) + γ (2κ − 1) + β)) d(u,M) = (u − ηκ)

and the exact solution in this instance reads

E(�v) = σ + δ(M + κ) + λ(M + κ)2 + ρ(2κ − 1) + ν(2κ − 1)2 + ξ(2κ − 1)(M + κ)

+ η−1κ�

[
(1 − η(α(M + κ) + γ (2κ − 1) + β))

M∏
i=1

vi − η

vi

−
M∏
i=1

vi + η

vi

]

where the parameters {vi} satisfy the Bethe ansatz equations

[1 − ηvi − η (α(M + κ) + γ (2κ − 1) + β)]

(
vi + ηκ

vi − ηκ

)
=

M∏
j 
=i

vi − vj − η

vi − vj + η
. (65)

The total atom number is given by N = 2M + 2κ − 1.

6.4. Solution for the reduced BCS model

As an alternative to the BCS mean-field approach, one can appeal to the exact solution
of the Hamiltonian (5) as given in [38, 39]. Much later it was shown by Cambiaggio
et al [91] that (5) is integrable in the sense that there exists a set of mutually commutative
operators which commute with the Hamiltonian. Our aim here is to show that both
these features are consequences of the fact that the Hamiltonian (5) can be derived using
the quantum inverse scattering method. This result, which was established in [61, 92], will
be proved below. Before doing so, let us remark that there have been several works on this
problem, including generalizations [93–95]. In some cases these models can be obtained
using trigonometric/hyperbolic versions of the Yang–Baxter algebra. While we will not go
into details here, this generalization from the procedure described below is straightforward
and is simply a matter of using the trigonometric/hyperbolic analogue of (14) from the outset.

We use a c-number realization g of the L-operator, defined by g = exp(−αησ) with
σ = diag(1,−1), as well as (20) to construct the transfer matrix

t (u) = Tr0
(
g0L

S
0L(u − εL) · · · LS

01(u − ε1)
)

(66)

which is an element of the L-fold tensor algebra of su(2). Here, Tr0 denotes the trace taken
over the auxiliary space, which for convenience is labelled by 0, while the tensor components
of the physical space are labelled 1, . . . ,L. Defining

Tj = lim
u→εj

u − εj

η2
t (u)
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for j = 1, 2, . . . ,L, we may write in the quasi-classical limit Tj = τj + o(η) and it follows
from the commutativity of the transfer matrices that [τj , τk] = 0,∀j, k. Explicitly, these
operators read

τj = −2αSz
j +

L∑
k 
=j

θjk

εj − εk

(67)

with θ = S+ ⊗ S− + S− ⊗ S+ + 2Sz ⊗ Sz. The set of operators (67), realized in terms
of canonical fermion operators, are those obtained by Cambiaggio et al [91] to establish the
integrability of the reduced BCS model. They first appeared in the work of Sklyanin [77] in
a general context, and are the Gaudin Hamiltonians [75, 76] in the presence of a non-uniform
magnetic field.

Next define a Hamiltonian through

H = − 1

α

L∑
j=1

εj τj +
1

4α3

L∑
j,k=1

τj τk +
1

2α2

L∑
j=1

τj − 1

2α

L∑
j=1

Cj (68)

=
L∑

j=1

2εjS
z
j − 1

α

L∑
j,k=1

S+
j S−

k (69)

where

C = S+S− + S−S+ + 2(Sz)2

is the Casimir invariant for the su(2) algebra. The Hamiltonian is universally integrable since
it is clear that [H, τj ] = 0,∀j , irrespective of the realizations of the su(2) algebra in the tensor
algebra.

In order to reproduce the Hamiltonian (5) we realize the su(2) generators through the
(spin-1/2) hard-core boson representation (6), namely

S−
j = bj S+

j = b
†
j Sz

j = 1
2 (nj − I). (70)

In this instance one obtains (5) (up to the constant term − ∑L
j=1 εj ) with g = 1/α.

Incorporating higher spin representations of the su(2) algebra yields models which may be
interpreted as coupled BCS systems [93, 94, 96, 97]. Generally, we can define a representation
of su(2) through

S−
j = −

∑
σ∈�

ajσ ajσ̄ S+
j =

∑
σ∈�

a
†
jσ a

†
jσ̄ Sz

j = 1

2

∑
σ∈�

(njσ + njσ̄ ± I) (71)

where the operators ajσ , a
†
jσ may be either bosonic (+sign in Sz

j ) or fermionic (−sign in Sz
j ).

Above, σ ∈ � is a degeneracy label and σ̄ /∈ � refers to the time-reversed state (i.e., the total
degeneracy is twice the cardinality of �). In this instance one recovers the pairing models
discussed in [95, 98, 99]. (For the bosonic case it is convenient to replace LS(u) with LK(u)

since (71) is not unitary for bosons.) Because of these different possibilities we will derive
the eigenvalues of the Hamiltonian (69) in a general setting.

For each index k of the tensor algebra in which the transfer matrix acts, and accordingly in
(69), suppose that we represent the su(2) algebra through the irreducible representation with
lowest weight (or spin) −sk. Note that we impose no restriction on the allowed values of sk in
order to accommodate infinite-dimensional representations such as the bosonic case of (71).
Choosing the pseudovacuum state to be the tensor product of lowest weight states gives

a(u) = exp(−αη)

L∏
k=1

u − εk − ηsk

u − εk

d(u) = exp(αη)

L∏
k=1

u − εk + ηsk

u − εk
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and the eigenvalues of the transfer matrix (66) as

�(u) = exp(−αη)

L∏
k=1

u − εk − ηsk

u − εk

M∏
j=1

u − vj + η

u − vj

+ exp(αη)

L∏
k=1

u − εk + ηsk

u − εk

M∏
j=1

u − vj − η

u − vj

.

The corresponding Bethe ansatz equations read

exp(−2αη)

L∏
k=1

vi − εk − ηsk

vi − εk + ηsk

=
M∏

j 
=i

vi − vj − η

vi − vj + η
.

The eigenvalues of the conserved operators (67) are obtained through the appropriate
terms in the expansion of the transfer matrix eigenvalues in the parameter η. This yields the
following result for the eigenvalues λj of τj :

λj =

2α +

L∑
k 
=j

2sk

εj − εk

−
M∑
i=1

2

εj − vi


 sj (72)

such that the parameters {vj } satisfy the quasi-classical limit of the Bethe ansatz equations

2α +
L∑

k=1

2sk

vi − εk

=
M∑

j 
=i

2

vi − vj

. (73)

For sk = 1/2,∀k these equations were found in [38] through a different technique.
Through (72) we can now determine the energy eigenvalues of (69). It is useful to note

the following identities:

2α

M∑
j=1

vj + 2
M∑

j=1

L∑
k=1

vj sk

vj − εk

= M(M − 1)

αM +
M∑

j=1

L∑
k=1

sk

vj − εk

= 0

M∑
j=1

L∑
k=1

vj sk

vj − εk

−
M∑

j=1

L∑
k=1

skεk

vj − εk

= M

L∑
k=1

sk.

Employing the above it is deduced that

L∑
j=1

λj = 2α

L∑
j=1

sj − 2αM

L∑
j=1

εjλj = 2α

L∑
j=1

εj sj +
L∑

j=1

L∑
k 
=j

sj sk − 2M

L∑
k=1

sk − 2α

M∑
j=1

vj + M(M − 1)

which, combined with the eigenvalues 2sj (sj + 1) for the Casimir invariants Cj , yields from
(68) and (72) the energy eigenvalues

E = 2
M∑

j=1

vj − 2
L∑

k=1

skεk. (74)
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From the above expression we see that the quasi-particle excitation energies are given by
twice the Bethe ansatz roots {vj } of (73). Finally, let us remark that the eigenstates obtained
in taking the quasi-classical limit assume the form

|�v〉 =
M∏

i=1


 L∑

j=1

S+
j

vi − εj


 |0〉

where {vi} satisfy (73), which are the same as those obtained by Richardson [38] in the case
of the reduced BCS model.

An alternative approach to the exact solution of the reduced BCS model, which produces
both the eigenstates and the eigenvalues of the conserved operators, was given by Sierra [100]
using conformal field theory given by the SU(2)k-WZW model in the limit when the level
k approaches −2. There also exists an intriguing analogy for the reduced BCS model from
two-dimensional electrostatics [101, 102].

7. Exact calculation of form factors

By using the Slavnov formula (40), (42) and (49), (50) we have explicit determinant
representations for the form factors of A(u), B(u), C(u) and D(u). Given any operator,
we would like to be able to express it solely in terms of these operators, which we call the
inverse problem. Solution of the inverse problem then permits us to determine the form factors
for that operator. In the following we will show in several examples how this can be achieved.
In some cases we will restrict our analysis to some subclass of the models (1), (3) and (4).

7.1. Form factors for the model of two Josephson coupled Bose–Einstein condensates

Specializing the Slavnov formula (40), (42) to the case of the Hamiltonian (1) gives the matrix
elements of F and G as

Fij = η−1

(vj − wi)


(

v2
j − (αN + β)2)

) N∏
k 
=i

(vj − wk + η)

(vj − wk)
− η−2

N∏
k 
=i

(vj − wk − η)

(vj − wk)




Gij = η−1(vj − wj)

(vj − wi)2


(

v2
j − (αN + β)2)

) N∏
k 
=i

(vj − wk + η)

(vj − wk)
− η−2

N∏
k 
=i

(vj − wk − η)

(vj − wk)


 .

In order to apply the Slavnov formula for the computation of wavefunction norms, we need to
determine the functions ζ(�v), introduced in (44). We can write

|�v〉 = C(v1, 1) · · · C(vN,N)|0〉

=
N∑

k=0

xk

(
a
†
1

)k(
a
†
2

)N−k|0〉

for some scalar functions xi . We deduce from the explicit form of C(u, j) that

x0 = η−N xN =
N∏

i=1

(vi − αN − β) .

On the other hand, we have

|�v} = B(v1, 1)† · · · B(vN ,N)†|0〉

=
N∑

k=0

yk

(
a
†
1

)k(
a
†
2

)N−k|0〉
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with

y0 =
N∏

i=1

(vi + αN + β) yN = η−N.

Using the identity (35) applied to the present case

N∏
i=1

(
v2

i − (αN + β)2
) = η−2N

gives

x0 = ηN

N∏
i=1

(vi − αN − β) y0 xN = ηN

N∏
i=1

(vi − αN − β) yN

which shows that

ζ(�v) = ηN

N∏
i=1

(vi − αN − β).

The square of the wavefunction norms are then given by

‖�v‖ = 〈�v|�v〉
= ζ(�v)S(�v : �v)

where S(�v : �v) is expressible in terms of F or G.
From (26) we can see that solution to the inverse problem is achieved through

a
†
1 = lim

u→∞
1

u
C(u) a2 = lim

u→∞
1

u
B(u).

Using the Slavnov formula we have, for |�v〉, | �w〉 both eigenstates of the Hamiltonian,

〈�v|a1| �w〉 = 〈 �w∣∣a†
1

∣∣�v〉
= ζ( �w)

{ �w∣∣a†
1

∣∣�v〉
= ζ( �w) lim

u→∞
1

u
{ �w|C(u)|�v〉

= ζ( �w) lim
u→∞

1

u
S( �w : v1, . . . , vM−1, u)

= ζ( �w)
∏M−1

p=1

∏M
q 
=p(vp − wq)∏M−1

k>l (vk − vl)
∏M

i<j (wi − wj)
det Ḡ

where

Ḡij = Gij for j 
= M

ḠiM = η−1.

In a similar way we find〈 �w∣∣a†
2

∣∣�v〉 = 〈�v|a2| �w〉
= ζ(�v){�v|a2| �w〉
= ζ(�v) lim

u→∞
1

u
{�v|B(u)| �w〉

= ζ(�v) lim
u→∞

1

u
{ �w|C(u)|�v〉
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= ζ(�v) lim
u→∞

1

u
S( �w : v1, . . . , vM−1, u)

= ζ(�v)
∏M−1

p=1

∏M
q 
=p(vp − wq)∏M−1

k>l (vk − vl)
∏M

i<j (wi − wj)
det Ḡ

with Ḡ as above.
In Josephson’s original proposal [43, 44] for tunnelling of Cooper pairs through an

insulating barrier, the effect is a manifestation of the relative phase difference of the
wavefunctions for the two superconductors. Josephson exploited the fact that the BCS
variational wavefunction (7) is not an eigenstate of the total particle number, and as phase and
particle number are canonically conjugate variables, a well-defined relative phase could be
assigned. For the model (1) there are technical difficulties which prevent a simple definition
for the phase variable [48, 103]. Consequently, the expectation values for the Josephson
tunnelling current

J = i
(
a
†
1a2 − a

†
2a1

)
as well as n̂ and n̂2, where n̂ = N1 −N2 is the relative particle number operator, are of primary
interest. In principle, these can all be expressed in terms of the form factors for a1, a

†
1, a2

and a
†
2 through completeness relations. This would yield expressions composed of sums of

determinants. However, in the case when

U11 = U22 µ1 = µ2 (75)

which results in α = β = 0 from (57), we can use a direct method to yield the form factors
for J , n̂ and n̂2, expressed as single determinants [62]. The reason we can achieve this under
the constraint (75) is that in this case the Hamiltonian acquires the additional symmetry

[P,H ] = 0

where P is the permutation operator defined by the action on the Fock basis

P · (
a
†
1

)j (
a
†
2

)k|0〉 = (
a
†
1

)k(
a
†
2

)j |0〉.
This means that the energy eigenstates are also eigenstates of P, and moreover, P 2 = I shows
that P has eigenvalues ±1. Only by exploiting this symmetry do the form factors for n̂, n̂2 and
J become accessible.

As mentioned earlier, the realization of Y [gl(2)] used to derive the model (1) is not
unitary. It is however equivalent to a unitary representation when (75) is satisfied in the sense
that

C†(u) = PB(u∗)P.

Consider for {vi} satisfying the Bethe ansatz equations

〈�v|�v〉 = ζ(�v)S(�v : �v)

= ζ(�v)〈0|B(vN) · · · B(v1)C(v1) · · · C(vN)|0〉
= ζ(�v)〈0|PC†(v∗

N)P . . . PC†(v∗
1)PC(v1) . . . C(vN)|0〉

= ζ(�v)〈0|C†(v∗
N) . . .C†(v∗

1)PC(v1) . . . C(vN)|0〉
= ζ(�v)〈�v|P |�v〉

which shows that ζ(�v) = ±1 is the eigenvalue of P, namely

P |�v〉 = ζ(�v)|�v〉.
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From the Slavnov formula, the squares of the norms of the eigenstates in this limit

‖�v‖2 = 〈�v|�v〉
= |S(�v : �v)|

are obtained directly.
We define

� = A(0) − D(0) = η2N1N2 + iJ − η−2.

Letting |�v〉 and | �w〉 be the eigenstates of the Hamiltonian we can appeal to (49) and (50) to
find

〈 �w|�|�v〉 = −ζ(�v)ζ( �w)ηN−2 ∏N
i=1(wi + η)∏N

k>l(vk − vl)
∏N

i<j (wi − wj)
det(F + 2Q) (76)

where the elements of Q read

Qij = η−3 ∏N
l=1(vj − vl − η)

wi(wi + η)
.

We remark that because the basis states are also Hamiltonian eigenstates, it is straightforward
to write down the time-dependent form factors

〈 �w|�(t)|�v〉 = exp(−it (E( �w) − E(�v)))〈 �w|�|�v〉 (77)

where the energies are given by (58), with α = β = 0.
Remarkably, from equation (76) all the form factors for n̂, n̂2 and J can be obtained.

This is achieved by exploiting the symmetry of the Hamiltonian under P. We begin with the
following result, which is easily proved. If ζ( �w) 
= ζ(�v) then

〈 �w|N1N2|�v〉 = 0.

If ζ( �w) = ζ(�v) then

〈 �w|J |�v〉 = 0.

The result follows from the observation

PN1N2 = N1N2P PJ = −JP.

We now find that

〈 �w|N1N2|�v〉 = η−2〈 �w|�|�v〉 + η−4〈 �w|�v〉
if ζ( �w) = ζ(�v), and is zero otherwise. Also

〈 �w|J |�v〉 = −i〈 �w|�|�v〉
if ζ( �w) 
= ζ(�v), and is zero otherwise.

The above shows that the form factors for J are obtained directly from those of �. Those
for n̂2 also follow, since we have n̂2 = N2 − 4N1N2 and the Hamiltonian eigenstates are also
eigenstates of the number operator N. Thus

〈 �w|n̂2|�v〉 = N2〈 �w|�v〉 − 4〈 �w|N1N2|�v〉
= (N2 − 4η−4)〈 �w|�v〉 − 4η−2〈 �w|�|�v〉

if ζ( �w) = ζ(�v), and zero otherwise. To obtain the form factors for n̂, we use the fact that J
is the time derivative of n̂, so

J = i

EJ

[n̂, H ]
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which gives

〈 �w|n̂|�v〉 = iEJ

E( �w) − E(�v)
〈 �w|J |�v〉

= EJ

E( �w) − E(�v)
〈 �w|�|�v〉

if ζ( �w) 
= ζ(�v) and zero otherwise.
The expectation values

〈θ〉� = 〈�|θ |�〉
〈�|�〉

where θ = n̂, n̂2 or J , and |�〉 is an arbitrary state, can be expressed in terms of the form
factors through completeness relations, in a time-dependent fashion. In particular, for a given
|�〉 the quantum fluctuations of the relative number operator

�(�; n̂) = 〈n̂2〉� − 〈n̂〉2
�

can be computed from these results.
The extension of these results to the general case without the imposition of the constraint

(75) remains an open problem.

7.2. Form factors for the models of atomic–molecular Bose–Einstein condensates

As both models for atomic–molecular Bose–Einstein condensates are derived from the same
L-operator (27), we may treat the two models simultaneously. In analogy with the previous
model, we can deduce

ζ(�v) =
M∏
i=1

(
ηκ + vi

ηκ − vi

)

c† = η−1 lim
u→∞

1

u
C(u)

K+ = −η−2 lim
u→∞

1

u
(B(u)† + C(u)).

This leads to the following form factors when {wi} and {vj } both satisfy the Bethe ansatz
equations:

〈�v, κ |c| �w, κ〉 = 〈 �w, κ |c†|�v, κ〉
= η−1ζ( �w) lim

u→∞
1

u
S( �w : v1, . . . , vM−1, u)

〈�v, κ |K−| �w, κ〉 = 〈 �w, κ |K+|�v, κ〉
= −η−2 (ζ( �w) + ζ(�v)) lim

u→∞
1

u
S( �w : v1, . . . , vM−1, u).

(78)

Note that for this class of models we include the label κ in the Bethe states in order to identify
the pseudovacuum used for the Bethe ansatz calculation.

Realizing the su(1, 1) algebra in terms of the Heisenberg algebra as in (60) or (63) gives
form factors for the models (3) and (4), respectively. Certain form factors for the single particle
atomic creation and annihilation operators can also be obtained by using the fact that for these
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models there are multiple possible pseudovacuum states for the Bethe ansatz calculations. For
the model (3) we have

〈�v, 1/4|a| �w, 3/4〉 = 〈 �w, 3/4|a†|�v, 1/4〉
= 〈 �w, 3/4|�v, 3/4〉

〈�v, 3/4|a| �w, 1/4〉 = 〈 �w, 1/4|a†|�v, 3/4〉
= 〈 �w, 1/4|a†a†|�v, 1/4〉
= 2〈 �w, 1/4|K+|�v, 1/4〉.

(79)

In the case of the model (4) we find
〈�v, (κ − 1/2)|a| �w, κ〉 = 〈 �w, κ |a†|�v, (κ − 1/2)〉

= √
2κ − 1〈 �w, κ |�v, κ〉

〈�v, (κ + 1/2)|b| �w, κ〉 = 〈 �w, κ |b†|�v, (κ + 1/2)〉
= 1√

2κ
〈 �w, κ |a†b†|�v, κ〉

= 1√
2κ

〈 �w, κ |K+|�v, κ〉.

(80)

Note that in the case of (79), if |�v, 3/4〉 is an eigenvector of (3), there is no reason to
assume that |�v, 1/4〉 is also an eigenvector. Hence formula (78) cannot be used to evaluate
(79), since in (78) it is required that |�v, 1/4〉 is an eigenvector. This is because we can only
establish that (44) holds for eigenvectors. A similar situation applies to (80).

In the quasi-classical limit the procedure for computing the form acquires a simplified
form, in which (79) and (82) can be evaluated. Moreover, the form factors for Kz can be
obtained, which are seemingly intractable in the general case. A detailed account is given
below. We set the coupling parameters Uij to zero in the Hamiltonians (3) and (4). This
corresponds to the ideal gas limit in the sense that the terms with coupling Uij describe the
S-wave scatterings between the particles. Mathematically, this means that η = 0,
corresponding to the quasi-classical limit, and ω(x) = β is constant. We scale the generating
elements A(u), B(u), C(u),D(u) of (27) by a factor of 1/u, and in taking the quasi-classical
limit we obtain the following realization of the Gaudin algebra:

A(u) = Kz

u
− (u + β)I B(u) = K−

u
− c

C(u) = c† − K+

u
D(u) = −Kz

u

(81)

with

a(u) = κ

u
− u − β d(u) = −κ

u
.

This realization is evidently not unitary, but it is clear that

〈 �w, κ | = (−1)M{ �w, κ |
even for arbitrary {wi}. By using the quasi-classical limit of the Slavnov formula (51) we may
find the scalar product of the states in these models,

〈 �w, κ |�v, κ〉 = (−1)M{ �w, κ |�v, κ〉
= 1∏M

k>l(vk − vl)
∏M

i<j (wi − wj)
det F̄

=
∏M

p=1

∏M
q 
=p(vp − wq)∏M

k>l(vk − vl)
∏M

i<j (wi − wj)
det Ḡ (82)
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where we have defined

F̄ij = −Fij = −

a(vj ) − d(vj ) +

M∑
k 
=i

2

vj − wk


 ∏M

l=1(vj − wl)

(vj − wi)2

Ḡij = −Gij

= −

a(vj ) − d(vj ) +

M∑
k 
=i

2

vj − wk


 (vj − wj)

(vj − wi)2

in order to absorb the factor (−1)M . The set {wi} provide a solution to the quasi-classical
limit of the Bethe ansatz equations

wi + β − 2κ

wi

=
M∑
k 
=i

2

wi − wk

. (83)

In the quasi-classical limit the energy eigenvalues for the Hamiltonian (3) are

E(�v) = µa(2M + 2κ − 1/2) − 2�

M∑
i=1

wi

while for (4) they are given by

E(�v) = µa(M + 2κ − 1) + µbM − �

M∑
i=1

wi.

In deriving the above energy expressions we have used the identity

βM +
M∑
i=1

wi =
M∑

i=1

2κ

wi

which follows from (83).
For the case when {vj } also satisfy the Bethe ansatz equations we find for the elements

of F̄

F̄ij = −

2κ

vj

− vj − β +
M∑

k 
=i

2

vj − wk


 ∏M

l=1(vj − wl)

(vj − wi)2

= −

2κ

(
1

vj

− 1

wi

)
+ wi − vj +

M∑
k 
=i

2

vj − wk

−
M∑

k 
=i

2

wi − wk


 ∏M

l=1(vj − wl)

(vj − wi)2

=

1 +

2κ

wivj

+
M∑

k 
=i

2

(wi − wk)(vj − wk)


 M∏

l 
=i

(vj − wl) (84)

and similarly

Ḡij =

1 +

2κ

wivj

+
M∑
k 
=i

2

(wi − wk)(vj − wk)


 (vj − wj)

(vj − wi)
. (85)

Letting |�v, κ〉 = | �w, κ〉 gives us the square of the norm formula

‖�v‖2 = det K̄
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where

K̄ii = 1 +
2κ

v2
i

+
M∑
k 
=i

2

(vi − vk)2
K̄ij = − 2

(vi − vj )2
for i 
= j.

To compute the form factors for Kz, we need to take a limit of the form factors of D(u)

as given by (55). This leads us to

〈 �w, κ |Kz|�v, κ〉 = − lim
u→0

u〈 �w, κ |D(u)|�v, κ〉

= κ
∏M

k=1 wk∏M
k>l(vk − vl)

∏M
i<j (wi − wj)

∏M
k=1 vk

det(F̄ − Q̄)

with

Q̄ij = −2
∏M

l 
=j (vj − vl)

w2
i

.

Using the fact that Kz + Nc is conserved in both models (3) and (4) and can be expressed in
terms of the total atom number N, the form factors for Nc can be deduced from those for Kz.

Next, we turn to the problem of finding the form factors for the operators c†, c,K+ and
K−. To do this we need to solve the inverse problem and express each of these operators in
terms of the realization of the Gaudin algebra. This is not difficult to achieve with the result

K+ = − lim
u→0

uC(u) K− = lim
u→0

uB(u)

c† = lim
u→∞ C(u) c = − lim

u→∞B(u).
(86)

Using the fact that the parameters {vi} in the Slavnov formula (82) are arbitrary, we can
then take the limits described above to yield the form factors. This gives the results

〈�v, κ |K−| �w, κ〉 = 〈 �w, κ |K+|�v, κ〉
= − lim

u→0
u〈 �w, κ |v1, . . . , vM−1, u, κ〉

=
∏M

q=1 wq∏M−1
k>l (vk − vl)

∏M
i<j (wi − wj)

∏M−1
p=1 vp

detP

where

Pij = F̄ij PiM = − 2κ

w2
i

for j 
= M

and

〈�v, κ |c| �w, κ〉 = 〈 �w, κ |c†|�v, κ〉
= lim

u→∞〈 �w, κ |v1, . . . , vM−1, u, κ〉

=
∏M−1

p=1

∏M
q 
=p(vp − wq)∏M−1

k>l (vk − vl)
∏M

i<j (wi − wj)
detW

where

Wij = Ḡij for j 
= M

WiM = 1.
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7.3. Form factors for the reduced BCS model

The results of this section have been published in [61] for the case sk = 1/2,∀k (although
different conventions and notation were used). A closely related study is given in [104]. The
fundamental difference between [104] and the results given below is that [104] employs the
generating function of correlators of the Gaudin algebra as developed in [31], whereas below
we will directly use the quasi-classical limit of the Slavnov formula as given by (51). By this
procedure the form factors are obtained in an explicit determinant representation. Again, we
will derive results for the general case of the Hamiltonian (69) where the irreducible realizations
of the su(2) algebras, labelled by a lowest weight −sk, are arbitrary. The realization of the
Gaudin algebra obtained by taking the quasi-classical limit of the realization of the Yang–
Baxter algebra given by (68) reads

A(u) = −αI +
L∑

k=1

Sz
k

u − εk

B(u) =
L∑

k=1

S−
k

u − εk

C(u) =
L∑

k=1

S+
k

u − εk

D(u) = αI −
L∑

k=1

Sz
k

u − εk

(87)

with

a(u) = −α −
L∑

k=1

sk

u − εk

d(u) = α +
L∑

k=1

sk

u − εk

.

This realization is unitary, so we do not need to deal with the issues of non-unitarity as in the
previous examples.

By using the quasi-classical limit of the Slavnov formula (51) we find the scalar product
of the states

〈 �w|�v〉 = 1∏M
k>l(vk − vl)

∏M
i<j (wi − wj)

detF

=
∏M

p=1

∏M
q 
=p(vp − wq)∏M

k>l(vk − vl)
∏M

i<j (wi − wj)
detG

(88)

where Gij and Fij are given by (52) and (53) and the Bethe ansatz equations for the parameters
{wi} are given by (73). Letting {vi} also be a solution of the Bethe ansatz equations we find

Fij =

−2α −

L∑
k=1

2sk

vj − εk

+
M∑
k 
=i

2

vj − wk


 ∏M

l=1(vj − wl)

(vj − wi)2

=

 L∑

k=1

2sk

(wi − εk)(vj − εk)
−

M∑
k 
=i

2

(wi − wk)(vj − wk)


 M∏

l 
=i

(vj − wl)

Gij =

 L∑

k=1

2sk

(wi − εk)(vj − εk)
−

M∑
k 
=i

2

(wi − wk)(vj − wk)


 (vj − wj)

(vj − wi)
.

Setting |�v〉 = | �w〉 gives us the square of the norm formula

‖�v‖2 = detK
where

Kii =
L∑

k=1

2sk

(vi − εk)2
−

M∑
k 
=i

2

(vi − vk)2
Kij = 2

(vi − vj )2
for i 
= j.
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Putting sk = 1/2,∀k, the above is exactly the norm square formula obtained by Richardson
[105].

To compute the form factors for Sz
m, we use the fact that D(u) has simple poles at

u = εj ,∀j , i.e.,

Sz
m = − lim

u→εm

(u − εm)D(u).

This leads to 〈 �w∣∣Sz
m|�v〉 = − lim

u→εm

(u − εm)〈 �w|D(u)|�v〉

= −sm

∏M
k=1(wk − εm)∏M

k=1(vk − εm)
∏M

k>l(vk − vl)
∏M

i<j (wi − wj)
det(F − Q(εm))

where F is as given above and

Qij (u) = 2
∏M

l 
=j (vj − vl)

(u − wi)2
.

Now we derive the form factors for the operators S+ and S−. In this instance the inverse
problem is solved as follows:

S−
m = lim

u→εm

(u − εm)B(u) S+
m = lim

u→εm

(u − εm)C(u). (89)

Using the fact that the parameters {vi} in the Slavnov formula (88) are arbitrary, we can then
take the limits described above to yield the form factors. The results are

〈�v|S−
m | �w〉 = 〈 �w|S+

m|�v〉
= lim

u→εm

(u − εm)〈 �w|v1, . . . , vM−1, u〉

=
∏M

q=1(wq − εm)∏M−1
p=1 (vp − εm)

∏M−1
k>l (vk − vl)

∏M
i<j (wi − wj)

detP

where

Pij = Fij for j 
= M

PiM = 1

(wi − εm)2
.

The above form factors can be used to construct general correlation functions, such as the
Penrose–Onsager–Yang off-diagonal long-range order parameter as given in [61].

8. Conclusion

We have reviewed the theory of the quantum inverse scattering method and algebraic Bethe
ansatz for the computation of energy spectra and form factors in exactly solvable models, and
demonstrated how it applies to several models of Bose–Einstein condensates and the reduced
BCS model. Throughout we have only used the specific example of the Yang–Baxter algebra
associated with the Lie algebra gl(2). However, a Yang–Baxter algebra can be associated with
any simple Lie algebra, Lie superalgebra, and the q-deformations of these structures. Hence
the theory can be applied on a much wider level. For example, generalized BCS systems
derived from Yang–Baxter algebras associated with the Lie algebras gl(4) and so(5) and
the Lie superalgebra gl(2|1) were derived in [106–108], respectively. The model obtained
in [107] was proposed by Richardson in 1966 to describe proton–neutron pairing in nuclear
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systems [109, 110]. The case of a general Lie algebra was examined in [111] in the context
of the Knizhnik–Zamolodchikov equation. One major challenge which remains is to extend
the Slavnov formula for the scalar products of states to the general case. In fact there has
been little progress on this aspect with the exceptions of the work by Reshetikhin on the
norms of the wavefunctions for models derived from the gl(3) Yang–Baxter algebra [112]
and by Göhmann and Korepin on the Hubbard model [113]. Another approach based on the
Knizhnik–Zamolodchikov equation for gl(n) can be found in [114].

In the method we have described the exact solution is parametrized in terms of the Bethe
ansatz equations, which cannot be solved analytically. Consequently, numerical analysis of
the solutions must be undertaken. For the BCS model there have been quite a number of
works on this topic (e.g., see [40, 102, 104, 115, 116]). For the models of Bose–Einstein
condensates the only numerical analysis of an exact solution, of which we know, is in [65].
It is also possible to conduct an asymptotic analysis of the Bethe ansatz equations to find the
exact asymptotic behaviour of the energy spectrum and correlation functions. Examples are
given in [63–65].
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